Developer Documentation
AnimationHelper.cc
1 /*===========================================================================*\
2 * *
3 * OpenFlipper *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openflipper.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenFlipper. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39 * *
40 \*===========================================================================*/
41 
42 
43 
44 #define ANIMATIONHELPER_CC
45 
46 #include "AnimationHelper.hh"
47 #include <cmath>
48 #include <cassert>
49 
50 #define APPROXIMATION_EPSILON 1.0e-09
51 #define VERYSMALL 1.0e-20
52 #define MAXIMUM_ITERATIONS 1000
53 
54 template<typename Scalar>
55 Scalar AnimationHelper::clampTo01Interval(Scalar _value) {
56  if (_value < 0.0)
57  return 0.0;
58  else if (_value > 1.0)
59  return 1.0;
60  else
61  return _value;
62 }
63 
64 template<typename Scalar>
65 Scalar AnimationHelper::abs(Scalar _value) {
66  if (_value < 0.0)
67  return _value * -1.0;
68  else
69  return _value;
70 }
71 
72 template<typename Scalar>
73 float AnimationHelper::approximateCubicBezierParameter(Scalar _atX, Scalar _P0X, Scalar _P1X, Scalar _C0X, Scalar _C1X) {
74  if (_atX - _P0X < VERYSMALL)
75  return 0.0;
76 
77  if (_P1X - _atX < VERYSMALL)
78  return 1.0;
79 
80  long iterationStep = 0;
81 
82  float u = 0.0f; float v = 1.0f;
83 
84  //iteratively apply subdivision to approach value atX
85  while (iterationStep < MAXIMUM_ITERATIONS) {
86 
87  // de Casteljau Subdivision.
88  Scalar a = (_P0X + _C0X)*0.5;
89  Scalar b = (_C0X + _C1X)*0.5;
90  Scalar c = (_C1X + _P1X)*0.5;
91  Scalar d = (a + b)*0.5;
92  Scalar e = (b + c)*0.5;
93  Scalar f = (d + e)*0.5; //this one is on the curve!
94 
95  //The curve point is close enough to our wanted atX
96  if (abs<Scalar>(f - _atX) < APPROXIMATION_EPSILON)
97  return clampTo01Interval<Scalar>((u + v)*0.5f);
98 
99  //dichotomy
100  if (f < _atX) {
101  _P0X = f;
102  _C0X = e;
103  _C1X = c;
104  u = (u + v)*0.5f;
105  } else {
106  _C0X = a; _C1X = d; _P1X = f; v = (u + v)*0.5f;
107  }
108 
109  iterationStep++;
110  }
111 
112  return clampTo01Interval<Scalar>((u + v)*0.5f);
113 }
114 
115 template<typename Scalar>
116 std::vector<Scalar> AnimationHelper::evaluateBezier(float at, std::vector<Scalar> _P0, std::vector<Scalar> _P1, std::vector<Scalar> _C0, std::vector<Scalar> _C1) {
117  unsigned int size = _P0.size();
118  assert(size == _P1.size() && size == _C0.size() && size == _C1.size());
119 
120  float s = at;
121  float sinv = (1-s);
122 
123  std::vector<Scalar> result;
124 
125  for (unsigned int i=0;i<size;++i) {
126  result.push_back( _P0[i]*sinv*sinv*sinv + 3*_C0[i]*s*sinv*sinv + 3*_C1[i]*s*s*sinv + _P1[i]*s*s*s );
127  }
128 
129  return result;
130 }
static std::vector< Scalar > evaluateBezier(float at, std::vector< Scalar > _P0, std::vector< Scalar > _P1, std::vector< Scalar > _C0, std::vector< Scalar > _C1)
Evaluates the cubic Bezier curve parameterized by P0, P1, C0 and C1 at the parameter value "at"...
static float approximateCubicBezierParameter(Scalar _atX, Scalar _P0X, Scalar _P1X, Scalar _C0X, Scalar _C1X)
Approximates the parameter value for a Bezier curve to get a certain x value Does an iterative DeCast...