Developer Documentation
CompositeT_impl.hh
Go to the documentation of this file.
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
46 //=============================================================================
47 //
48 // CLASS CompositeT - IMPLEMENTATION
49 //
50 //=============================================================================
51 
52 #define OPENMESH_SUBDIVIDER_ADAPTIVE_COMPOSITET_CC
53 
54 
55 //== INCLUDES =================================================================
56 
57 #include <OpenMesh/Core/System/config.hh>
59 #include <ostream>
61 #include <OpenMesh/Tools/Subdivider/Adaptive/Composite/RuleInterfaceT.hh>
62 
63 
64 //== NAMESPACE ================================================================
65 
66 namespace OpenMesh { // BEGIN_NS_OPENMESH
67 namespace Subdivider { // BEGIN_NS_DECIMATER
68 namespace Adaptive { // BEGIN_NS_ADAPTIVE
69 
70 
71 //== IMPLEMENTATION ==========================================================
72 
73 
74 template<class M>
75 bool
76 CompositeT<M> ::
77 initialize( void )
78 {
79  typename Mesh::VertexIter v_it;
80  typename Mesh::FaceIter f_it;
81  typename Mesh::EdgeIter e_it;
82  const typename Mesh::Point zero_point(0.0, 0.0, 0.0);
83 
84  // ---------------------------------------- Init Vertices
85  for (v_it = mesh_.vertices_begin(); v_it != mesh_.vertices_end(); ++v_it)
86  {
87  mesh_.data(*v_it).set_state(0);
88  mesh_.data(*v_it).set_final();
89  mesh_.data(*v_it).set_position(0, mesh_.point(*v_it));
90  }
91 
92  // ---------------------------------------- Init Faces
93  for (f_it = mesh_.faces_begin(); f_it != mesh_.faces_end(); ++f_it)
94  {
95  mesh_.data(*f_it).set_state(0);
96  mesh_.data(*f_it).set_final();
97  mesh_.data(*f_it).set_position(0, zero_point);
98  }
99 
100  // ---------------------------------------- Init Edges
101  for (e_it = mesh_.edges_begin(); e_it != mesh_.edges_end(); ++e_it)
102  {
103  mesh_.data(*e_it).set_state(0);
104  mesh_.data(*e_it).set_final();
105  mesh_.data(*e_it).set_position(0, zero_point);
106  }
107 
108 
109  // ---------------------------------------- Init Rules
110 
111  int n_subdiv_rules_ = 0;
112 
113 
114  // look for subdivision rule(s)
115  for (size_t i=0; i < n_rules(); ++i) {
116 
117  if (rule_sequence_[i]->type()[0] == 'T' ||
118  rule_sequence_[i]->type()[0] == 't')
119  {
120  ++n_subdiv_rules_;
121  subdiv_rule_ = rule_sequence_[i];
122  subdiv_type_ = rule_sequence_[i]->subdiv_type();
123  }
124  }
125 
126 
127  // check for correct number of subdivision rules
128  assert(n_subdiv_rules_ == 1);
129 
130  if (n_subdiv_rules_ != 1)
131  {
132  ::omerr() << "Error! More than one subdivision rules not allowed!\n";
133  return false;
134  }
135 
136  // check for subdivision type
137  assert(subdiv_type_ == 3 || subdiv_type_ == 4);
138 
139  if (subdiv_type_ != 3 && subdiv_type_ != 4)
140  {
141  ::omerr() << "Error! Unknown subdivision type in sequence!" << std::endl;
142  return false;
143  }
144 
145  // set pointer to last rule
146 // first_rule_ = rule_sequence_.front();
147 // last_rule_ = rule_sequence_.back(); //[n_rules() - 1];
148 
149  // set numbers and previous rule
150  for (size_t i = 0; i < n_rules(); ++i)
151  {
152  rule_sequence_[i]->set_subdiv_type(subdiv_type_);
153  rule_sequence_[i]->set_n_rules(n_rules());
154  rule_sequence_[i]->set_number(i);
155  rule_sequence_[i]->set_prev_rule(rule_sequence_[(i+n_rules()-1)%n_rules()]);
156  rule_sequence_[i]->set_subdiv_rule(subdiv_rule_);
157  }
158 
159  return true;
160 }
161 
162 
163 // ----------------------------------------------------------------------------
164 #define MOBJ mesh_.deref
165 #define TVH to_vertex_handle
166 #define HEH halfedge_handle
167 #define NHEH next_halfedge_handle
168 #define PHEH prev_halfedge_handle
169 #define OHEH opposite_halfedge_handle
170 // ----------------------------------------------------------------------------
171 
172 
173 template<class M>
174 void CompositeT<M>::refine(typename M::FaceHandle& _fh)
175 {
176  std::vector<typename Mesh::HalfedgeHandle> hh_vector;
177 
178  // -------------------- calculate new level for faces and vertices
179  int new_face_level =
180  t_rule()->number() + 1 +
181  ((int)floor((float)(mesh_.data(_fh).state() - t_rule()->number() - 1)/n_rules()) + 1) * n_rules();
182 
183  int new_vertex_level =
184  new_face_level + l_rule()->number() - t_rule()->number();
185 
186  // -------------------- store old vertices
187  // !!! only triangle meshes supported!
188  typename Mesh::VertexHandle vh[3];
189 
190  vh[0] = mesh_.TVH(mesh_.HEH(_fh));
191  vh[1] = mesh_.TVH(mesh_.NHEH(mesh_.HEH(_fh)));
192  vh[2] = mesh_.TVH(mesh_.PHEH(mesh_.HEH(_fh)));
193 
194  // save handles to incoming halfedges for getting the new vertices
195  // after subdivision (1-4 split)
196  if (subdiv_type_ == 4)
197  {
198  hh_vector.clear();
199 
200  // green face
201  if (mesh_.data(_fh).final())
202  {
203  typename Mesh::FaceHalfedgeIter fh_it(mesh_.fh_iter(_fh));
204 
205  for (; fh_it.is_valid(); ++fh_it)
206  {
207  hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(*fh_it)));
208  }
209  }
210 
211  // red face
212  else
213  {
214 
215  typename Mesh::HalfedgeHandle red_hh(mesh_.data(_fh).red_halfedge());
216 
217  hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(mesh_.NHEH(red_hh))));
218  hh_vector.push_back(mesh_.PHEH(mesh_.OHEH(mesh_.PHEH(mesh_.OHEH(red_hh)))));
219  }
220  }
221 
222 
223  // -------------------- Average rule before topo rule?
224  if (t_rule()->number() > 0)
225  t_rule()->prev_rule()->raise(_fh, new_face_level-1);
226 
227  // -------------------- Apply topological operator first
228  t_rule()->raise(_fh, new_face_level);
229 
230 #if 0 // original code
231  assert(MOBJ(_fh).state() >=
232  subdiv_rule_->number()+1+(int) (MOBJ(_fh).state()/n_rules())*n_rules());
233 #else // improved code (use % operation and avoid floating point division)
234  assert( mesh_.data(_fh).state() >= ( t_rule()->number()+1+generation(_fh) ) );
235 #endif
236 
237  // raise new vertices to final levels
238  if (subdiv_type_ == 3)
239  {
240  typename Mesh::VertexHandle new_vh(mesh_.TVH(mesh_.NHEH(mesh_.HEH(_fh))));
241 
242  // raise new vertex to final level
243  l_rule()->raise(new_vh, new_vertex_level);
244  }
245 
246  if (subdiv_type_ == 4)
247  {
248  typename Mesh::HalfedgeHandle hh;
249  typename Mesh::VertexHandle new_vh;
250 
251  while (!hh_vector.empty()) {
252 
253  hh = hh_vector.back();
254  hh_vector.pop_back();
255 
256  // get new vertex
257  new_vh = mesh_.TVH(mesh_.NHEH(hh));
258 
259  // raise new vertex to final level
260  l_rule()->raise(new_vh, new_vertex_level);
261  }
262  }
263 
264  // raise old vertices to final position
265  l_rule()->raise(vh[0], new_vertex_level);
266  l_rule()->raise(vh[1], new_vertex_level);
267  l_rule()->raise(vh[2], new_vertex_level);
268 }
269 
270 
271 // ----------------------------------------------------------------------------
272 
273 
274 template<class M>
275 void CompositeT<M>::refine(typename M::VertexHandle& _vh)
276 {
277  // calculate next final level for vertex
278  int new_vertex_state = generation(_vh) + l_rule()->number() + 1;
279 
280  // raise vertex to final position
281  l_rule()->raise(_vh, new_vertex_state);
282 }
283 
284 
285 // ----------------------------------------------------------------------------
286 
287 
288 template <class M>
289 std::string CompositeT<M>::rules_as_string(const std::string& _sep) const
290 {
291  std::string seq;
292  typename RuleSequence::const_iterator it = rule_sequence_.begin();
293 
294  if ( it != rule_sequence_.end() )
295  {
296  seq = (*it)->type();
297  for (++it; it != rule_sequence_.end(); ++it )
298  {
299  seq += _sep;
300  seq += (*it)->type();
301  }
302  }
303  return seq;
304 }
305 
306 // ----------------------------------------------------------------------------
307 #undef MOBJ
308 #undef TVH
309 #undef HEH
310 #undef NHEH
311 #undef PHEH
312 #undef OHEH
313 //=============================================================================
314 } // END_NS_ADAPTIVE
315 } // END_NS_SUBDIVIDER
316 } // END_NS_OPENMESH
317 //=============================================================================
void refine(typename M::FaceHandle &_fh)
Refine one face.
Kernel::Point Point
Coordinate type.
Definition: PolyMeshT.hh:112
std::string rules_as_string(const std::string &_sep=" * ") const
Return the sequence as string.
Kernel::FaceHalfedgeIter FaceHalfedgeIter
Circulator.
Definition: PolyMeshT.hh:168
Kernel::VertexHandle VertexHandle
Handle for referencing the corresponding item.
Definition: PolyMeshT.hh:136