Developer Documentation
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
PolyMeshT.cc
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
42 /*===========================================================================*\
43  * *
44  * $Revision$ *
45  * $Date$ *
46  * *
47 \*===========================================================================*/
48 
49 
50 //=============================================================================
51 //
52 // CLASS PolyMeshT - IMPLEMENTATION
53 //
54 //=============================================================================
55 
56 
57 #define OPENMESH_POLYMESH_C
58 
59 
60 //== INCLUDES =================================================================
61 
62 #include <OpenMesh/Core/Mesh/PolyMeshT.hh>
63 #include <OpenMesh/Core/Geometry/LoopSchemeMaskT.hh>
64 #include <OpenMesh/Core/Utils/GenProg.hh>
65 #include <OpenMesh/Core/Utils/vector_cast.hh>
66 #include <OpenMesh/Core/Utils/vector_traits.hh>
68 #include <vector>
69 
70 
71 //== NAMESPACES ===============================================================
72 
73 
74 namespace OpenMesh {
75 
76 //== IMPLEMENTATION ==========================================================
77 
78 template <class Kernel>
80 {
81  assert(Kernel::has_edge_status());//this function needs edge status property
82  uint n_feature_edges = 0;
83  for (EdgeIter e_it = Kernel::edges_begin(); e_it != Kernel::edges_end(); ++e_it)
84  {
85  if (fabs(calc_dihedral_angle(*e_it)) > _angle_tresh)
86  {//note: could be optimized by comparing cos(dih_angle) vs. cos(_angle_tresh)
87  this->status(*e_it).set_feature(true);
88  n_feature_edges++;
89  }
90  else
91  {
92  this->status(*e_it).set_feature(false);
93  }
94  }
95  return n_feature_edges;
96 }
97 
98 //-----------------------------------------------------------------------------
99 
100 template <class Kernel>
103 {
104  return calc_face_normal_impl(_fh, typename GenProg::IF<
106  PointIs3DTag,
108  >::Result());
109 }
110 
111 template <class Kernel>
114 {
115  assert(this->halfedge_handle(_fh).is_valid());
116  ConstFaceVertexIter fv_it(this->cfv_iter(_fh));
117 
118  // Safeguard for 1-gons
119  if (!(++fv_it).is_valid()) return Normal(0, 0, 0);
120 
121  // Safeguard for 2-gons
122  if (!(++fv_it).is_valid()) return Normal(0, 0, 0);
123 
124  // use Newell's Method to compute the surface normal
125  Normal n(0,0,0);
126  for(fv_it = this->cfv_iter(_fh); fv_it.is_valid(); ++fv_it)
127  {
128  // next vertex
129  ConstFaceVertexIter fv_itn = fv_it;
130  ++fv_itn;
131 
132  if (!fv_itn.is_valid())
133  fv_itn = this->cfv_iter(_fh);
134 
135  // http://www.opengl.org/wiki/Calculating_a_Surface_Normal
136  const Point a = this->point(*fv_it) - this->point(*fv_itn);
137  const Point b = this->point(*fv_it) + this->point(*fv_itn);
138 
139  n[0] += a[1] * b[2];
140  n[1] += a[2] * b[0];
141  n[2] += a[0] * b[1];
142  }
143 
144  const typename vector_traits<Normal>::value_type norm = n.length();
145 
146  // The expression ((n *= (1.0/norm)),n) is used because the OpenSG
147  // vector class does not return self after component-wise
148  // self-multiplication with a scalar!!!
149  return (norm != typename vector_traits<Normal>::value_type(0))
150  ? ((n *= (typename vector_traits<Normal>::value_type(1)/norm)), n)
151  : Normal(0, 0, 0);
152 }
153 
154 template <class Kernel>
156 PolyMeshT<Kernel>::calc_face_normal_impl(FaceHandle, PointIsNot3DTag) const
157 {
158  // Dummy fallback implementation
159  return Normal(typename Normal::value_type(0));
160 }
161 
162 //-----------------------------------------------------------------------------
163 
164 template <class Kernel>
168  const Point& _p1,
169  const Point& _p2) const
170 {
171  return calc_face_normal_impl(_p0, _p1, _p2, typename GenProg::IF<
173  PointIs3DTag,
175  >::Result());
176 }
177 
178 template <class Kernel>
181 calc_face_normal_impl(const Point& _p0,
182  const Point& _p1,
183  const Point& _p2,
184  PointIs3DTag) const
185 {
186 #if 1
187  // The OpenSG <Vector>::operator -= () does not support the type Point
188  // as rhs. Therefore use vector_cast at this point!!!
189  // Note! OpenSG distinguishes between Normal and Point!!!
190  Normal p1p0(vector_cast<Normal>(_p0)); p1p0 -= vector_cast<Normal>(_p1);
191  Normal p1p2(vector_cast<Normal>(_p2)); p1p2 -= vector_cast<Normal>(_p1);
192 
193  Normal n = cross(p1p2, p1p0);
194  typename vector_traits<Normal>::value_type norm = n.length();
195 
196  // The expression ((n *= (1.0/norm)),n) is used because the OpenSG
197  // vector class does not return self after component-wise
198  // self-multiplication with a scalar!!!
199  return (norm != typename vector_traits<Normal>::value_type(0)) ? ((n *= (typename vector_traits<Normal>::value_type(1)/norm)),n) : Normal(0,0,0);
200 #else
201  Point p1p0 = _p0; p1p0 -= _p1;
202  Point p1p2 = _p2; p1p2 -= _p1;
203 
204  Normal n = vector_cast<Normal>(cross(p1p2, p1p0));
205  typename vector_traits<Normal>::value_type norm = n.length();
206 
207  return (norm != 0.0) ? n *= (1.0/norm) : Normal(0,0,0);
208 #endif
209 }
210 
211 template <class Kernel>
213 PolyMeshT<Kernel>::calc_face_normal_impl(const Point&, const Point&, const Point&, PointIsNot3DTag) const
214 {
215  return Normal(typename Normal::value_type(0));
216 }
217 
218 //-----------------------------------------------------------------------------
219 
220 template <class Kernel>
221 typename PolyMeshT<Kernel>::Point
223 calc_face_centroid(FaceHandle _fh) const
224 {
225  Point _pt;
226  _pt.vectorize(0);
227  Scalar valence = 0.0;
228  for (ConstFaceVertexIter cfv_it = this->cfv_iter(_fh); cfv_it.is_valid(); ++cfv_it, valence += 1.0)
229  {
230  _pt += this->point(*cfv_it);
231  }
232  _pt /= valence;
233  return _pt;
234 }
235 //-----------------------------------------------------------------------------
236 
237 
238 template <class Kernel>
239 void
242 {
243  // Face normals are required to compute the vertex and the halfedge normals
244  if (Kernel::has_face_normals() ) {
245  update_face_normals();
246 
247  if (Kernel::has_vertex_normals() ) update_vertex_normals();
248  if (Kernel::has_halfedge_normals()) update_halfedge_normals();
249  }
250 }
251 
252 
253 //-----------------------------------------------------------------------------
254 
255 
256 template <class Kernel>
257 void
260 {
261  FaceIter f_it(Kernel::faces_begin()), f_end(Kernel::faces_end());
262 
263  for (; f_it != f_end; ++f_it)
264  this->set_normal(*f_it, calc_face_normal(*f_it));
265 }
266 
267 
268 //-----------------------------------------------------------------------------
269 
270 
271 template <class Kernel>
272 void
274 update_halfedge_normals(const double _feature_angle)
275 {
276  HalfedgeIter h_it(Kernel::halfedges_begin()), h_end(Kernel::halfedges_end());
277 
278  for (; h_it != h_end; ++h_it)
279  this->set_normal(*h_it, calc_halfedge_normal(*h_it, _feature_angle));
280 }
281 
282 
283 //-----------------------------------------------------------------------------
284 
285 
286 template <class Kernel>
289 calc_halfedge_normal(HalfedgeHandle _heh, const double _feature_angle) const
290 {
291  if(Kernel::is_boundary(_heh))
292  return Normal(0,0,0);
293  else
294  {
295  std::vector<FaceHandle> fhs; fhs.reserve(10);
296 
297  HalfedgeHandle heh = _heh;
298 
299  // collect CW face-handles
300  do
301  {
302  fhs.push_back(Kernel::face_handle(heh));
303 
304  heh = Kernel::next_halfedge_handle(heh);
305  heh = Kernel::opposite_halfedge_handle(heh);
306  }
307  while(heh != _heh && !Kernel::is_boundary(heh) && !is_estimated_feature_edge(heh, _feature_angle));
308 
309  // collect CCW face-handles
310  if(heh != _heh && !is_estimated_feature_edge(_heh, _feature_angle))
311  {
312  heh = Kernel::opposite_halfedge_handle(_heh);
313 
314  if ( !Kernel::is_boundary(heh) ) {
315  do
316  {
317 
318  fhs.push_back(Kernel::face_handle(heh));
319 
320  heh = Kernel::prev_halfedge_handle(heh);
321  heh = Kernel::opposite_halfedge_handle(heh);
322  }
323  while(!Kernel::is_boundary(heh) && !is_estimated_feature_edge(heh, _feature_angle));
324  }
325  }
326 
327  Normal n(0,0,0);
328  for(unsigned int i=0; i<fhs.size(); ++i)
329  n += Kernel::normal(fhs[i]);
330 
331  return n.normalize();
332  }
333 }
334 
335 
336 //-----------------------------------------------------------------------------
337 
338 
339 template <class Kernel>
340 bool
342 is_estimated_feature_edge(HalfedgeHandle _heh, const double _feature_angle) const
343 {
344  EdgeHandle eh = Kernel::edge_handle(_heh);
345 
346  if(Kernel::has_edge_status())
347  {
348  if(Kernel::status(eh).feature())
349  return true;
350  }
351 
352  if(Kernel::is_boundary(eh))
353  return false;
354 
355  // compute angle between faces
356  FaceHandle fh0 = Kernel::face_handle(_heh);
357  FaceHandle fh1 = Kernel::face_handle(Kernel::opposite_halfedge_handle(_heh));
358 
359  Normal fn0 = Kernel::normal(fh0);
360  Normal fn1 = Kernel::normal(fh1);
361 
362  // dihedral angle above angle threshold
363  return ( dot(fn0,fn1) < cos(_feature_angle) );
364 }
365 
366 
367 //-----------------------------------------------------------------------------
368 
369 
370 template <class Kernel>
374 {
375  Normal n;
376  calc_vertex_normal_fast(_vh,n);
377 
378  Scalar norm = n.length();
379  if (norm != 0.0) n *= (Scalar(1.0)/norm);
380 
381  return n;
382 }
383 
384 //-----------------------------------------------------------------------------
385 template <class Kernel>
388 {
389  _n.vectorize(0.0);
390  for (ConstVertexFaceIter vf_it = this->cvf_iter(_vh); vf_it.is_valid(); ++vf_it)
391  _n += this->normal(*vf_it);
392 }
393 
394 //-----------------------------------------------------------------------------
395 template <class Kernel>
398 {
399  _n.vectorize(0.0);
400  ConstVertexIHalfedgeIter cvih_it = this->cvih_iter(_vh);
401  if (! cvih_it.is_valid() )
402  {//don't crash on isolated vertices
403  return;
404  }
405  Normal in_he_vec;
406  calc_edge_vector(*cvih_it, in_he_vec);
407  for ( ; cvih_it.is_valid(); ++cvih_it)
408  {//calculates the sector normal defined by cvih_it and adds it to _n
409  if (this->is_boundary(*cvih_it))
410  {
411  continue;
412  }
413  HalfedgeHandle out_heh(this->next_halfedge_handle(*cvih_it));
414  Normal out_he_vec;
415  calc_edge_vector(out_heh, out_he_vec);
416  _n += cross(in_he_vec, out_he_vec);//sector area is taken into account
417  in_he_vec = out_he_vec;
418  in_he_vec *= -1;//change the orientation
419  }
420 }
421 
422 //-----------------------------------------------------------------------------
423 template <class Kernel>
426 {
427  static const LoopSchemeMaskDouble& loop_scheme_mask__ =
429 
430  Normal t_v(0.0,0.0,0.0), t_w(0.0,0.0,0.0);
431  unsigned int vh_val = this->valence(_vh);
432  unsigned int i = 0;
433  for (ConstVertexOHalfedgeIter cvoh_it = this->cvoh_iter(_vh); cvoh_it.is_valid(); ++cvoh_it, ++i)
434  {
435  VertexHandle r1_v( this->to_vertex_handle(*cvoh_it) );
436  t_v += (typename vector_traits<Point>::value_type)(loop_scheme_mask__.tang0_weight(vh_val, i))*this->point(r1_v);
437  t_w += (typename vector_traits<Point>::value_type)(loop_scheme_mask__.tang1_weight(vh_val, i))*this->point(r1_v);
438  }
439  _n = cross(t_w, t_v);//hack: should be cross(t_v, t_w), but then the normals are reversed?
440 }
441 
442 //-----------------------------------------------------------------------------
443 
444 
445 template <class Kernel>
446 void
449 {
450  VertexIter v_it(Kernel::vertices_begin()), v_end(Kernel::vertices_end());
451 
452  for (; v_it!=v_end; ++v_it)
453  this->set_normal(*v_it, calc_vertex_normal(*v_it));
454 }
455 
456 //=============================================================================
457 } // namespace OpenMesh
458 //=============================================================================
Kernel::ConstFaceVertexIter ConstFaceVertexIter
Circulator.
Definition: PolyMeshT.hh:180
Kernel::ConstVertexOHalfedgeIter ConstVertexOHalfedgeIter
Circulator.
Definition: PolyMeshT.hh:176
void calc_face_centroid(FaceHandle _fh, Point &_pt) const
calculates the average of the vertices defining _fh
Definition: PolyMeshT.hh:276
virtual Normal calc_halfedge_normal(HalfedgeHandle _heh, const double _feature_angle=0.8) const
Calculate halfedge normal for one specific halfedge.
Definition: PolyMeshT.cc:289
T::value_type value_type
Type of the scalar value.
void update_halfedge_normals(const double _feature_angle=0.8)
Update normal vectors for all halfedges.
Definition: PolyMeshT.cc:274
void vector_cast(const src_t &_src, dst_t &_dst, GenProg::Int2Type< n >)
Cast vector type to another vector type by copying the vector elements.
Definition: vector_cast.hh:86
Kernel::Point Point
Coordinate type.
Definition: PolyMeshT.hh:115
osg::Vec3f cross(const osg::Vec3f &_v1, const osg::Vec3f &_v2)
Adapter for osg vector member computing a scalar product.
Normal calc_vertex_normal(VertexHandle _vh) const
Calculate vertex normal for one specific vertex.
Definition: PolyMeshT.cc:373
unsigned int find_feature_edges(Scalar _angle_tresh=OpenMesh::deg_to_rad(44.0))
Definition: PolyMeshT.cc:79
Kernel::ConstVertexIHalfedgeIter ConstVertexIHalfedgeIter
Circulator.
Definition: PolyMeshT.hh:177
void update_vertex_normals()
Update normal vectors for all vertices.
Definition: PolyMeshT.cc:448
void calc_vertex_normal_fast(VertexHandle _vh, Normal &_n) const
Definition: PolyMeshT.cc:387
void update_face_normals()
Update normal vectors for all faces.
Definition: PolyMeshT.cc:259
void calc_vertex_normal_loop(VertexHandle _vh, Normal &_n) const
Compute normals for all primitives.
Definition: PolyMeshT.cc:425
Handle for a face entity.
Definition: Handles.hh:146
osg::Vec3f::ValueType dot(const osg::Vec3f &_v1, const osg::Vec3f &_v2)
Adapter for osg vector member computing a scalar product.
Kernel::Scalar Scalar
Scalar type.
Definition: PolyMeshT.hh:113
Kernel::ConstVertexFaceIter ConstVertexFaceIter
Circulator.
Definition: PolyMeshT.hh:179
static T & Instance()
Definition: SingletonT.hh:94
Kernel::VertexHandle VertexHandle
Handle for referencing the corresponding item.
Definition: PolyMeshT.hh:139
void calc_vertex_normal_correct(VertexHandle _vh, Normal &_n) const
Compute normals for all primitives.
Definition: PolyMeshT.cc:397
void update_normals()
Compute normals for all primitives.
Definition: PolyMeshT.cc:241
Add normals to mesh item (vertices/faces)
Definition: Attributes.hh:87
bool is_estimated_feature_edge(HalfedgeHandle _heh, const double _feature_angle) const
Definition: PolyMeshT.cc:342
Kernel::Normal Normal
Normal type.
Definition: PolyMeshT.hh:117
virtual Normal calc_face_normal(FaceHandle _fh) const
Definition: PolyMeshT.cc:102